Teacher:		Date(s):		District:		School:	
Subject area:	Chemistry	Grade Level:	10	Unit Title	Creek water analysis	Lesson Title: Solutions, Concentratio ns and Molarity	
			Purpos	se and Lesson			
Standard(s)	•	Unc	lerstanding g	goals(s):	Driving	Question:	
uses scientifier investigative expected to (G) express quantities us and mathem dimensional notation, and (10) Science understands that influen solutions. Th	fic processes. The fic methods to see questions. The se questions. The sing scientific controls analysis, scienti d significant fig ce concepts. The s and can apply the student is ex be the unique role	und ter solve student is chemical onventions es, including fic ures; e student the factors of pected to:	-	f the following key	v location in the cr range lev	a correlation between GP and the amount of certain eek water? How could out vels of these substances a d around the creek?	ions -of-

in chemical and biolog	ical systems;		
(B) develop and use g regarding solubility th investigations with aq	nrough		
(C) calculate the concentration of solutions in units of molarity;			
(D) use molarity to calculate the dilutions of solutions;			
Student Objectives:	Assessment of Objectives:	Lesson Steps/Activities including Timeline & Grouping	
SWBAT calculate Assessed in class with molarity when given worksheet and concentration vice afterward with versa. homework.		 Engage: Remind students about field trip and work out any last-minute logistics. Tell the students that this lesson will help them to analyze the data that they will collect on the field trip. Introduce the discussion forum they will be using to answer questions throughout the week. 3 questions will be posted that night in which the students need to answer each in 75-100 words. Show Video about LISDOLA Explore/Explain: Start with the polyatomic molecules the students will be looking for in their samples (Nitrates, Phosphates, Chlorine, Ammonia). From this point, instructors will explain ions and the properties of their compositions. 	

	 Atoms in the same column as each other group tend to exhibit similar characteristics, including the number of electrons the elements would need to gain or lose to resemble the nearest noble gas atom. Group I ions (alkali metals) have +1 charges. Group 2 ions (alkaline earth metals) have +2 charges. Group 6 ions (nonmetals) have -2 charges. Group 7 ions (halides) have -1 charges. There is no simple way to predict the charges of the transition metals. Look on a table listing charges (valences) for possible values. For introductory and general chemistry courses, the +1, +2, and +3 charges are most often used.
	Barium has a +2 charge and hydroxide has a -1 charge, therefore
	 Ba²⁺ ion is required to balance 2 OH⁻ ions Ammonium has a +1 charge and phosphate has a -3 charge, therefore NH₄⁺ ions are required to balance 1 PO₄³⁻ ion
	 Potassium has a +1 charge and sulfate has a -2 charge, therefore K⁺ ions are required to balance 1 SO₄²⁻ ion
	Answer
	1. Ba(OH) ₂ 2. (NH ₄) ₃ PO ₄ 3. K ₂ SO ₄
	SOLUTIONS
	Next we discuss solutions [solute, solvent, solubility rules] which shifts over to

concentration. Instructors will briefly introduce mathematical expressions of concentration including percent composition, volume percent, and the main expression Molarity .
Molarity
The molarity of a solution is calculated by taking the moles of solute and dividing by the liters of solution.
<u>Moles of solute</u> Liters of solution
This is probably easiest to explain with examples: Suppose we had 1.00 mole of sucrose (it's about 342.3 grams) and proceeded to mix it into some water. It would dissolve and make sugar water. We keep adding water, dissolving and stirring until all the solid was gone. We then made sure that when everything was well-mixed, there was exactly 1.00 liter of solution. What would be the molarity of this solution? The answer is 1.00 mol/L. Notice that both the units of mol and L remain. Neither cancels. A replacement for mol/L is often used. It is a capital M. So if you write 1.00 M for the answer, then that is correct. And never forget this: replace the M with mol/L when you do calculations. The M is just shorthand for mol/L.
Example 1. A 250 ml solution is made with 0.50 moles of NaCl. What is the Molarity of the solution?

	Solution: In this case we are given ml, while the formula calls for L. We
	must change the ml to Liters as shown below:
	250 ml 1 liter
	x = 0.25 liters
	1000 ml
	Example 2. What would be the volume of a 2.00 M solution made with
	6.00 moles of LiF?
	Solution:
	# of moles of solute
	Liters of solution =
	Molarity
	Given: # of moles of solute = 6.00 moles
	Molarity = 2.00 M (moles/L)
	Liters of solution = 6.00 moles
	2.00 moles /L
	Answer = 3.00 L of solution
	Example 2. What is the volume of 3.0 M solution of NaCl made with 526g of solute?

	Solution:	
	First find the molar mass of NaCl. Na = 23.0 g \times 1 ion per formula unit = 23.0 g Cl = 35.5 g \times 1 ion per formula unit = 35.5 g	
	58.5 g	
	Now find out how many moles of NaCl you have:	
	mass of sample # of moles = Molar mass	
	Given: mass of sample = 526 g Molar mass = 58.5 g	
	526 g # of moles of NaCl = 58.5 g	
	Answer: # of moles of NaCl = 8.99 moles	
	Example 3. How many grams of CaCl ₂ would be used in the making of 5.00 \times 10 ² cm ³ of a 5.0M solution?	
	In this case, what they are looking for is different. You could start to solve this problem the same way you did example 1, but the end would	

require you to change the number of moles of $CaCl_2$ to the mass of $CaCl_2$. You would use the formula below.
mass of sample
of moles =
Molar mass
mass of sample
of moles × Molar mass = × Molar mass
Molar mass
mass of sample = # moles of solute × Molar mass
Given: # of moles of solute = 2.5 moles (from our answer to example 1.) Molar mass of solute (CaCl ₂) = 111 g/mole (from the periodic table)
Mass of CaCl ₂ = 2.5 moles × 111 g/ mole
Answer: Mass of CaCl ₂ = 280 g (when rounded correctly)
Elaborate (10 min, grouping):
Any relevant questions or concerns which arise from the explain portion
and/or this section of the project will be addressed.
Crystal Light: Fruit Punch Juice

		Give each group a water bottle with different amounts and an individual pack of Fruit Punch Crystal Light. 1. How are the different concentrations going to affect molarity? 2. Figure out the molarity for your sample? Evaluate:		
 Quiz Molarity and Polyatomic Ions Students will finish homework worksheet a questions, due before midnight. Discussion Forum Questions: Respond with 75-100 words Given Monday, Due Tuesday: 		orksheet and complete discussion forum At what amounts are the chemicals most ir effects? chemicals beneficial? Describe their		
Language Modifications	Special Needs Modifications	Materials & Resources:	Technology:	
ELL students may use the internet and	We are not yet aware of the modifications that	Worksheet	Calculators, projector or similar device for power point.	

their group members as needed to translate the questions and interpret information gathered. We will also consider a word wall for if it is appropriate for the class.	we will need to make.		
		Reflection	
What worked:		vements:	Overall Implications for your teaching:
engagement and student learning? en		an you increase student learning, ment, etc., next time you teach sson?	What did you learn from teaching this lesson that can apply to other lessons?