UNT Lesson Plan

UNT Lesson Plan

in chemical and biological systems;
(B) develop and use general rules regarding solubility through investigations with aqueous solutions;
(C) calculate the concentration of solutions in units of molarity;
(D) use molarity to calculate the dilutions of solutions;
$\left.\begin{array}{|l|l|l|}\hline \text { Student Objectives: } & \begin{array}{l}\text { Assessment of } \\ \text { Objectives: }\end{array} & \text { Lesson Steps/Activities including Timeline \& Grouping } \\ \hline \begin{array}{l}\text { SWBAT calculate } \\ \text { molarity when given } \\ \text { concentration vice } \\ \text { versa. }\end{array} & \begin{array}{l}\text { Assessed in class with } \\ \text { worksheet and } \\ \text { afterward with } \\ \text { homework. }\end{array} & \begin{array}{l}\text { Engage: } \\ \text { Remind students about field trip and work out any last-minute logistics. Tell the } \\ \text { students that this lesson will help them to analyze the data that they will } \\ \text { collect on the field trip. Introduce the discussion forum they will be using to } \\ \text { answer questions throughout the week. } 3 \text { questions will be posted that night in } \\ \text { which the students need to answer each in } 75-100 \text { words. } \\ \text { Show Video about LISDOLA }\end{array} \\ \text { Explore/Explain: } \\ \text { Start with the polyatomic molecules the students will be looking for in their } \\ \text { samples (Nitrates, Phosphates, Chlorine, Ammonia). From this point, instructors } \\ \text { will explain ions and the properties of their compositions. } \\ \text { POLYATOMIC IONS }\end{array}\right\}$

UNT Lesson Plan

	Atoms in the same column as each other group tend to exhibit similar characteristics, including the number of electrons the elements would need to gain or lose to resemble the nearest noble gas atom. Group I ions (alkali metals) have +1 charges. - Group 2 ions (alkaline earth metals) have +2 charges. - Group 6 ions (nonmetals) have -2 charges. - Group 7 ions (halides) have -1 charges. - There is no simple way to predict the charges of the transition metals. Look on a table listing charges (valences) for possible values. For introductory and general chemistry courses, the +1,
and +3 charges are most often used.	

UNT Lesson Plan

UNT Lesson Plan

UNT Lesson Plan

		Solution: First find the molar mass of NaCl . $\mathrm{Na}=23.0 \mathrm{~g} \times 1$ ion per formula unit $=23.0 \mathrm{~g}$ $\mathrm{Cl}=35.5 \mathrm{~g} \times 1$ ion per formula unit $=35.5 \mathrm{~g}$ 58.5 g Now find out how many moles of NaCl you have: $\text { \# of moles }=\frac{\text { mass of sample }}{} \begin{aligned} & \text { Molar mass } \end{aligned}$ Given: mass of sample $=526 \mathrm{~g}$ Molar mass $=58.5 \mathrm{~g}$ $\text { \# of moles of } \mathrm{NaCl}=\frac{526 \mathrm{~g}}{58 .--------}$ Answer: \# of moles of $\mathrm{NaCl}=8.99$ moles Example 3. How many grams of CaCl_{2} would be used in the making of 5.00 $\times 10^{2} \mathrm{~cm}^{3}$ of a 5.0 M solution? In this case, what they are looking for is different. You could start to solve this problem the same way you did example 1, but the end would

UNT Lesson Plan

		require you to change the number of moles of CaCl_{2} to the mass of CaCl_{2}. You would use the formula below. mass of sample \# of moles = Molar mass mass of sample $=\#$ moles of solute \times Molar mass Given: \# of moles of solute $=2.5$ moles (from our answer to example 1.) Molar mass of solute $\left(\mathrm{CaCl}_{2}\right)=111 \mathrm{~g} /$ mole (from the periodic table) Mass of $\mathrm{CaCl}_{2}=2.5$ moles $\times 111 \mathrm{~g} /$ mole Answer: Mass of $\mathrm{CaCl}_{2}=280 \mathrm{~g}$ (when rounded correctly) Elaborate (10 min, grouping): Any relevant questions or concerns which arise from the explain portion and/or this section of the project will be addressed. Crystal Light: Fruit Punch Juice

UNT Lesson Plan

		Give each group a water bottle with different amounts and an individual pack of Fruit Punch Crystal Light. 1. How are the different concentrations going to affect molarity? 2. Figure out the molarity for your sample? Evaluate: - Quiz Molarity and Polyatomic Ions - Students will finish homework worksheet and complete discussion forum questions, due before midnight. - Discussion Forum Questions: Respond with 75-100 words Given Monday, Due Tuesday: 1. Research each chemical. At what amounts are the chemicals most harmful and what are their effects? 2. At what amounts are the chemicals beneficial? Describe their beneficial effects. 3. Where do these 4 chemicals derive?	
Language Modifications	Special Needs Modifications	Materials \& Resources:	Technology:
ELL students may use the internet and	We are not yet aware of the modifications that	Worksheet	Calculators, projector or similar device for power point.

UNT Lesson Plan

their group members as needed to translate the questions and interpret information gathered. We will also consider a word wall for if it is appropriate for the class.	we will need to make.			
Reflection				
What worked:		Improvements:		Overall Implications for your teaching:
What parts of the lesson led to engagement and student learning?			n you increase student learning, ment, etc., next time you teach sson?	What did you learn from teaching this lesson that can apply to other lessons?

